.. _temp_ev_two_zone_cooling_acc: Temporal evolution, two zones, cooling+acc+adb exp ================================================== .. code:: ipython3 import warnings warnings.filterwarnings('ignore') .. code:: ipython3 import matplotlib.pyplot as plt import numpy as np .. code:: ipython3 import jetset print('tested on jetset',jetset.__version__) .. parsed-literal:: tested on jetset 1.2.2 In this tutorial I show how to perform a full acc+radiative+adiabatic expansion simulation. To have full understanding of the analysis presented in this tutorial, it is advised to read the paper Tramacere et al (2022) [Tramacere2022]_. We load the model of the flare simulated in :ref:``temp_ev_two_zone_cooling_acc``. And the we evolve the radiative region under the effect of radiative plus adiabatic cooling .. code:: ipython3 from jetset.jet_timedep import JetTimeEvol temp_ev_acc=JetTimeEvol.load_model('two_zone_rad_acc.pkl') .. code:: ipython3 temp_ev_acc.show_model() .. parsed-literal:: -------------------------------------------------------------------------------- JetTimeEvol model description -------------------------------------------------------------------------------- physical setup: -------------------------------------------------------------------------------- .. raw:: html Table length=29
namepar typevalunitsval*units*log
delta ttime5.000000e+01s0.00029979245799999996R/cFalse
log. samplingtime0.000000e+00NoneFalse
R/ctime1.667820e+05s1.0R/cFalse
IC coolingoffNoneFalse
Sync coolingonNoneFalse
Adiab. coolingonNoneFalse
Reg. expansionoffNoneFalse
Diff coeff6.666667e-06s-1NoneFalse
Acc coeff4.000000e-05s-1NoneFalse
Diff index2.000000e+00NoneFalse
Acc index1.000000e+00s-1NoneFalse
Tesc acctime5.003461e+04s3.0R_acc/cFalse
Eacc maxenergy4.000000e+60ergNoneFalse
Tesc radtime1.667820e+65s1e+60R/cFalse
Delta R accaccelerator_width5.000000e+14cmNoneFalse
B accmagnetic field2.000000e-01cmNoneFalse
R_rad rad startregion_position5.000000e+15cmNoneFalse
R_H rad startregion_position1.000000e+17cmNoneFalse
T_A0=1/ACC_COEFFtime2.500000e+04s0.149896229R/cFalse
T_D0=1/DIFF_COEFFtime1.500000e+05s0.899377374R/cFalse
T_DA0=1/(2*DIFF_COEFF)time7.500000e+04s0.449688687R/cFalse
gamma Lambda Turb. max1.173358e+11NoneFalse
gamma Lambda Coher. max1.173358e+10NoneFalse
gamma eq Syst. Acc (synch. cool)7.832383e+05NoneFalse
gamma eq Diff. Acc (synch. cool)1.309535e+05NoneFalse
T cooling(gamma_eq=gamma_eq_Diff)1.477242e+05sNoneFalse
T cooling(gamma_eq=gamma_eq_Sys)2.469874e+04sNoneFalse
T min. synch. cooling1.934500e+02sNoneFalse
L inj (electrons)injected lum.5.000000e+39erg/sNoneFalse
.. parsed-literal:: model parameters: -------------------------------------------------------------------------------- .. raw:: html Table length=30
model namenamepar typeunitsvalphys. bound. minphys. bound. maxlogfrozen
jet_time_evdurationtime_grids1.000000e+060.000000e+00--FalseTrue
jet_time_evgmin_gridgamma_grid1.000000e+000.000000e+00--FalseTrue
jet_time_evgmax_gridgamma_grid1.000000e+080.000000e+00--FalseTrue
jet_time_evgamma_grid_sizegamma_grid1.500000e+030.000000e+00--FalseTrue
jet_time_evTStart_Acctime_grids0.000000e+000.000000e+00--FalseTrue
jet_time_evTStop_Acctime_grids1.000000e+050.000000e+00--FalseTrue
jet_time_evTStart_Injtime_grids0.000000e+000.000000e+00--FalseTrue
jet_time_evTStop_Injtime_grids1.000000e+050.000000e+00--FalseTrue
jet_time_evT_esc_accescape_time(R_acc/c)*3.000000e+00----FalseTrue
jet_time_evEsc_Index_accfp_coeff_index0.000000e+00----FalseTrue
jet_time_evt_D0acceleration_times1.500000e+050.000000e+00--FalseTrue
jet_time_evt_A0acceleration_times2.500000e+040.000000e+00--FalseTrue
jet_time_evDiff_Indexfp_coeff_indexs2.000000e+000.000000e+00--FalseTrue
jet_time_evAcc_Indexfp_coeff_index1.000000e+00----FalseTrue
jet_time_evDelta_R_accaccelerator_widthcm5.000000e+140.000000e+00--FalseTrue
jet_time_evB_accmagnetic_fieldG2.000000e-010.000000e+00--FalseTrue
jet_time_evE_acc_maxacc_energyerg4.000000e+600.000000e+00--FalseTrue
jet_time_evLambda_max_Turbturbulence_scalecm1.000000e+150.000000e+00--FalseTrue
jet_time_evLambda_choer_Turb_factorturbulence_scalecm1.000000e-010.000000e+00--FalseTrue
jet_time_evT_esc_radescape_time(R/c)*1.000000e+60----FalseTrue
jet_time_evEsc_Index_radfp_coeff_index0.000000e+00----FalseTrue
jet_time_evR_rad_startregion_sizecm5.000000e+150.000000e+00--FalseTrue
jet_time_evR_H_rad_startregion_positioncm1.000000e+170.000000e+00--FalseTrue
jet_time_evm_Bmagnetic_field_index1.000000e+001.000000e+002.000000e+00FalseTrue
jet_time_evt_jet_expexp_start_times1.000000e+050.000000e+00--FalseTrue
jet_time_evbeta_exp_Rbeta_expansionv/c*1.000000e+000.000000e+001.000000e+00FalseTrue
jet_time_evB_radmagnetic_fieldG2.000000e-010.000000e+00--FalseTrue
jet_time_evt_sizetime_grid2.000000e+040.000000e+00--FalseTrue
jet_time_evnum_samplestime_ev_output5.000000e+020.000000e+00--FalseTrue
jet_time_evL_injinj_luminosityerg / s5.000000e+390.000000e+00--FalseTrue
here we set some relevant parameters that will be described in detail in the next version of the documentation .. code:: ipython3 temp_ev_acc.plot_time_profile() .. parsed-literal:: .. image:: Temp_Ev_two_zones_acc_and_cooling_adb_exp_files/Temp_Ev_two_zones_acc_and_cooling_adb_exp_11_1.png Particle spectrum in the radiative region .. code:: ipython3 p=temp_ev_acc.plot_tempev_emitters(region='rad',loglog=False,energy_unit='gamma',pow=0) p.ax.axvline(temp_ev_acc.temp_ev.gamma_eq_t_A, ls='--') p.ax.axvline(temp_ev_acc.temp_ev.gamma_eq_t_DA, ls='--') p.setlim(x_max=1E7,x_min=1,y_min=1E-18,y_max=100) .. image:: Temp_Ev_two_zones_acc_and_cooling_adb_exp_files/Temp_Ev_two_zones_acc_and_cooling_adb_exp_13_0.png SEDs in the radiation region .. code:: ipython3 p=temp_ev_acc.plot_tempev_model(region='rad',sed_data=None, use_cached = True) p.setlim(y_min=1E-18,x_min=1E7) .. image:: Temp_Ev_two_zones_acc_and_cooling_adb_exp_files/Temp_Ev_two_zones_acc_and_cooling_adb_exp_15_0.png We generate a lightcurve in the range nu1=2.4E22 Hz, nu2=7.2E25 Hz, without the effect of the light crossing time, in the observer frame .. code:: ipython3 lg=temp_ev_acc.rad_region.make_lc(nu1=2.4E22,nu2=7.2E25,name='gamma',eval_cross_time=False,delta_t_out=100,use_cached=True,frame='obs') .. code:: ipython3 plt.plot(lg['time'],lg['flux']) plt.xlabel('time (%s)'%lg['time'].unit) plt.ylabel('flux (%s)'%lg['flux'].unit) .. parsed-literal:: Text(0, 0.5, 'flux (erg / (cm2 s))') .. image:: Temp_Ev_two_zones_acc_and_cooling_adb_exp_files/Temp_Ev_two_zones_acc_and_cooling_adb_exp_18_1.png We generate a lightcurve in the range nu1=2.4E22 Hz, nu2=7.2E25 Hz, with the effect of the light crossing time, in the observer frame .. code:: ipython3 lg_cross=temp_ev_acc.rad_region.make_lc(nu1=2.4E22,nu2=7.2E25,name='gamma',eval_cross_time=True,delta_t_out=100,use_cached=True,frame='obs',cross_time_slices=100) .. code:: ipython3 plt.plot(lg['time'],lg['flux']) plt.plot(lg_cross['time'],lg_cross['flux']) plt.xlabel('time (%s)'%lg['time'].unit) plt.ylabel('flux (%s)'%lg['flux'].unit) .. parsed-literal:: Text(0, 0.5, 'flux (erg / (cm2 s))') .. image:: Temp_Ev_two_zones_acc_and_cooling_adb_exp_files/Temp_Ev_two_zones_acc_and_cooling_adb_exp_21_1.png .. code:: ipython3 lr_1=temp_ev_acc.rad_region.make_lc(nu1=1E10,name='1E10 Hz',eval_cross_time=False,delta_t_out=100,use_cached=True,frame='obs') lr_2=temp_ev_acc.rad_region.make_lc(nu1=5E9,name='1E9 Hz',eval_cross_time=False,delta_t_out=100,use_cached=True,frame='obs') .. code:: ipython3 plt.plot(lr_1['time'],lr_1['flux']/lr_1['flux'].max()) plt.plot(lr_2['time'],lr_2['flux']/lr_2['flux'].max()) plt.xlabel('time (%s)'%lr_1['time'].unit) .. parsed-literal:: Text(0.5, 0, 'time (s)') .. image:: Temp_Ev_two_zones_acc_and_cooling_adb_exp_files/Temp_Ev_two_zones_acc_and_cooling_adb_exp_23_1.png .. code:: ipython3 lr_1_cross=temp_ev_acc.rad_region.make_lc(nu1=1E10,name='gamma',eval_cross_time=True,delta_t_out=100,use_cached=True,frame='obs',cross_time_slices=100) lr_2_cross=temp_ev_acc.rad_region.make_lc(nu1=5E9,name='gamma',eval_cross_time=True,delta_t_out=100,use_cached=True,frame='obs',cross_time_slices=100) .. code:: ipython3 plt.plot(lr_1_cross['time'],lr_1_cross['flux']/lr_1_cross['flux'].max()) plt.plot(lr_2_cross['time'],lr_2_cross['flux']/lr_2_cross['flux'].max()) plt.xlabel('time (%s)'%lr_1_cross['time'].unit) .. parsed-literal:: Text(0.5, 0, 'time (s)') .. image:: Temp_Ev_two_zones_acc_and_cooling_adb_exp_files/Temp_Ev_two_zones_acc_and_cooling_adb_exp_25_1.png Expanding the radiative region ------------------------------ We now plug the radiative region from ``temp_ev_acc`` to new model with adiabatic expansion the following two functions define an estimate of the total extent of the simulation to follow the expansion .. code:: ipython3 def delta_t_est(t_exp,R0,beta_exp): return t_exp+R0/(beta_exp*3E10) def t_dec_est(R0,a,beta_exp): return ((R0+beta_exp*3E10)*np.power(beta_exp*3E10,a)) we set the initial radius equal to the radius of the radiative region of the ``temp_ev_acc`` model .. code:: ipython3 t_exp=1E7 beta_exp=0.3 R0=temp_ev_acc.rad_region.jet.parameters.R.val duration=delta_t_est(t_exp,R0,beta_exp)+10*t_dec_est(R0,-1,beta_exp) we build the ``temp_ev_expansion`` expansion model .. code:: ipython3 from jetset.jet_timedep import JetTimeEvol temp_ev_expansion=JetTimeEvol(jet_rad=temp_ev_acc.rad_region.jet,inplace=True,only_radiation=True,Q_inj=None) temp_ev_expansion.rad_region.jet.nu_min=1E8 T_SIZE=np.int(duration/1000) NUM_SET=np.int(T_SIZE) NUM_SET=min(5000,NUM_SET) temp_ev_expansion.parameters.TStart_Inj.val=-0 temp_ev_expansion.parameters.TStop_Inj.val=-0 temp_ev_expansion.parameters.duration.val=duration temp_ev_expansion.parameters.T_esc_rad.val=1E60 temp_ev_expansion.parameters.Esc_Index_rad.val=0 temp_ev_expansion.parameters.t_size.val=T_SIZE temp_ev_expansion.parameters.num_samples.val=NUM_SET temp_ev_expansion.parameters.gmin_grid.val=1.0 temp_ev_expansion.parameters.gmax_grid.val=1E8 temp_ev_expansion.parameters.gamma_grid_size.val=1500 we set to ``'on'`` the region expansion, and we set the relevant paramters .. code:: ipython3 temp_ev_expansion.region_expansion='on' temp_ev_expansion.parameters.t_jet_exp.val=t_exp temp_ev_expansion.parameters.beta_exp_R.val = beta_exp temp_ev_expansion.parameters.R_rad_start.val = R0 .. code:: ipython3 temp_ev_expansion.init_TempEv() temp_ev_expansion.show_model() .. parsed-literal:: -------------------------------------------------------------------------------- JetTimeEvol model description -------------------------------------------------------------------------------- physical setup: -------------------------------------------------------------------------------- .. raw:: html Table length=12
namepar typevalunitsval*units*log
delta ttime1.000008e+03s0.005995894232556255R/cFalse
log. samplingtime0.000000e+00NoneFalse
R/ctime1.667820e+05s1.0R/cFalse
IC coolingoffNoneFalse
Sync coolingonNoneFalse
Adiab. coolingonNoneFalse
Reg. expansiononNoneFalse
Tesc radtime1.667820e+65s1e+60R/cFalse
R_rad rad startregion_position5.000000e+15cmNoneFalse
R_H rad startregion_position1.000000e+17cmNoneFalse
beta exp.region_position3.000000e-01v/c8993773740.0 cm / scm/sFalse
T min. synch. cooling1.934500e+02sNoneFalse
.. parsed-literal:: model parameters: -------------------------------------------------------------------------------- .. raw:: html Table length=17
model namenamepar typeunitsvalphys. bound. minphys. bound. maxlogfrozen
jet_time_evdurationtime_grids1.611112e+070.000000e+00--FalseTrue
jet_time_evgmin_gridgamma_grid1.000000e+000.000000e+00--FalseTrue
jet_time_evgmax_gridgamma_grid1.000000e+080.000000e+00--FalseTrue
jet_time_evgamma_grid_sizegamma_grid1.500000e+030.000000e+00--FalseTrue
jet_time_evTStart_Injtime_grids0.000000e+000.000000e+00--FalseTrue
jet_time_evTStop_Injtime_grids0.000000e+000.000000e+00--FalseTrue
jet_time_evT_esc_radescape_time(R/c)*1.000000e+60----FalseTrue
jet_time_evEsc_Index_radfp_coeff_index0.000000e+00----FalseTrue
jet_time_evR_rad_startregion_sizecm5.000000e+150.000000e+00--FalseTrue
jet_time_evR_H_rad_startregion_positioncm1.000000e+170.000000e+00--FalseTrue
jet_time_evm_Bmagnetic_field_index1.000000e+001.000000e+002.000000e+00FalseTrue
jet_time_evt_jet_expexp_start_times1.000000e+070.000000e+00--FalseTrue
jet_time_evbeta_exp_Rbeta_expansionv/c*3.000000e-010.000000e+001.000000e+00FalseTrue
jet_time_evB_radmagnetic_fieldG2.000000e-010.000000e+00--FalseTrue
jet_time_evt_sizetime_grid1.611100e+040.000000e+00--FalseTrue
jet_time_evnum_samplestime_ev_output5.000000e+030.000000e+00--FalseTrue
jet_time_evL_injinj_luminosityerg / s1.000000e+390.000000e+00--FalseTrue
.. code:: ipython3 temp_ev_expansion.plot_time_profile() .. parsed-literal:: .. image:: Temp_Ev_two_zones_acc_and_cooling_adb_exp_files/Temp_Ev_two_zones_acc_and_cooling_adb_exp_37_1.png **we set ``do_injection=False`` because we want only to evolve the particle already injected and evolved in the radiative region of the ``temp_ev_acc`` model** setting ``cache_SEDs_rad=True`` will generate and cache all the SED at any time of the ``NUM_SET``. **This will increase the computational time during the run. Anyhow, will speed up the computation of SEDs and light curves. Moreover, these SEDs will be saved in the model, and will be read if once you will load the model in the future**. .. code:: ipython3 temp_ev_expansion.run(cache_SEDs_rad=True,do_injection=False) .. parsed-literal:: temporal evolution running .. parsed-literal:: 0%| | 0/16111 [00:00 .. image:: Temp_Ev_two_zones_acc_and_cooling_adb_exp_files/Temp_Ev_two_zones_acc_and_cooling_adb_exp_44_1.png we notice the two peaks in the radio lightcurves, due to transition of the SSA frequency generated by the expansion (see [Tramacere2022]_ for more details) .. code:: ipython3 p=temp_ev_expansion.plot_tempev_model(region='rad',sed_data=None, use_cached = True,time_slice_bin=50) p.setlim(y_min=1E-18,x_min=1E7) .. image:: Temp_Ev_two_zones_acc_and_cooling_adb_exp_files/Temp_Ev_two_zones_acc_and_cooling_adb_exp_46_0.png .. code:: ipython3 from jetset.plot_sedfit import PlotSED p=PlotSED(frame='obs',density=False) p.resplot.remove() skip_label=False step=int(temp_ev_expansion.parameters.num_samples.val/50) for i in range(0,NUM_SET,step): t=temp_ev_expansion.rad_region.time_sampled_emitters._get_time_samples(time_slice=i) s=temp_ev_expansion.rad_region.get_SED(comp='Sum',time_slice=i,frame='obs',use_cached=True) s_sync=temp_ev_expansion.rad_region.get_SED(comp='Sync',time_slice=i,frame='obs',use_cached=True) s_IC=temp_ev_expansion.rad_region.get_SED(comp='SSC',time_slice=i,frame='obs',use_cached=True) if t[0][0]=temp_ev_expansion.parameters.t_jet_exp.val and skip_label is False: label='expansion' skip_label=True p.add_model_plot(model=s,label=label,color=c,density=False,auto_label=False) p.setlim(y_min=1E-18,x_min=1E7) .. image:: Temp_Ev_two_zones_acc_and_cooling_adb_exp_files/Temp_Ev_two_zones_acc_and_cooling_adb_exp_47_0.png .. bibliography:: references.rst